By Topic

Point matching as a classification problem for fast and robust object pose estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lepetit, V. ; Comput. Vision Lab., Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Pilet, J. ; Fua, P.

We propose a novel approach to point matching under large viewpoint and illumination changes that are suitable for accurate object pose estimation at a much lower computational cost than state-of-the-art methods. Most of these methods rely either on using ad hoc local descriptors or on estimating local affine deformations. By contrast, we treat wide baseline matching of key points as a classification problem, in which each class corresponds to the set of all possible views of such a point. Given one or more images of a target object, we train the system by synthesizing a large number of views of individual key points and by using statistical classification tools to produce a compact description of this view set. At run-time, we rely on this description to decide to which class, if any, an observed feature belongs. This formulation allows us to use a classification method to reduce matching error rates, and to move some of the computational burden from matching to training, which can be performed beforehand. In the context of pose estimation, we present experimental results for both planar and non-planar objects in the presence of occlusions, illumination changes, and cluttered backgrounds. We show that the method is both reliable and suitable for initializing real-time applications.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

27 June-2 July 2004