By Topic

Cyclic articulated human motion tracking by sequential ancestral simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng Chang ; Dept. of Electr. & Comput. Eng.,, Illinois Univ., Chicago, IL, USA ; Ansari, R. ; Khokhar, A.

Accurate tracking of cyclic human motion in video data helps in developing computer-aided applications such as gait analysis, visual surveillance, patient rehabilitation, etc. This paper presents a novel technique for tracking cyclic human motion based on decomposing complex cyclic motion into components and maintaining coupling between components. The decomposition reduces the dimensionality of the problem and enables a graphical modeling of the articulated human body. The coupling between components is modeled by their phase relationship and represented as directed edges in Bayesian networks and undirected edges in Markov random fields. Such coupling is maintained in tracking through ancestral simulation (AS) and Markov potentials in a sequential Monte Carlo tracking framework. We show that the approach handles severe self-occlusion and foreign body occlusion with improved accuracy and efficiency.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

27 June-2 July 2004