Cart (Loading....) | Create Account
Close category search window
 

Wide-baseline stereo from multiple views: A probabilistic account

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Strecha, C. ; ESAT-PSI, Univ. of Leuven, Belgium ; Fransens, Rik ; Van Gool, L.

This paper describes a method for dense depth reconstruction from a small set of wide-baseline images. In a wide-baseline setting an inherent difficulty which complicates the stereo-correspondence problem is self-occlusion. Also, we have to consider the possibility that image pixels in different images, which are projections of the same point in the scene, will have different color values due to non-Lambertian effects or discretization errors. We propose a Bayesian approach to tackle these problems. In this framework, the images are regarded as noisy measurements of an underlying 'true' image-function. Also, the image data is considered incomplete, in the sense that we do not know which pixels from a particular image are occluded in the other images. We describe an EM-algorithm, which iterates between estimating values for all hidden quantities, and optimizing the current depth estimates. The algorithm has few free parameters, displays a stable convergence behavior and generates accurate depth estimates. The approach is illustrated with several challenging real-world examples. We also show how the algorithm can generate realistic view interpolations and how it merges the information of all images into a new, synthetic view.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

27 June-2 July 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.