By Topic

Clear underwater vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schechner, Y.Y. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Karpel, N.

Underwater imaging is important for scientific research and technology, as well as for popular activities. We present a computer vision approach which easily removes degradation effects in underwater vision. We analyze the physical effects of visibility degradation. We show that the main degradation effects can be associated with partial polarization of light. We therefore present an algorithm which inverts the image formation process, to recover a good visibility image of the object. The algorithm is based on a couple of images taken through a polarizer at different orientations. As a by product, a distance map of the scene is derived as well. We successfully used our approach when experimenting in the sea using a system we built. We obtained great improvement of scene contrast and color correction, and nearly doubled the underwater visibility range.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

27 June-2 July 2004