By Topic

Globally optimal segmentation of interacting surfaces with geometric constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kang Li ; Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA ; Xiaodong Wu ; D. Z. Chen ; M. Sonka

Efficient detection of globally optimal surfaces representing object boundaries in volumetric datasets is important and remains challenging in many medical image analysis applications. We have developed an optimal surface detection method that is capable of simultaneously detecting multiple interacting surfaces, in which the optimality is controlled by the cost functions designed for individual surfaces and several geometric constraints defining the surface smoothness and interrelations. The method solves the surface detection problems by transforming them into computing minimum s-t cuts in the derived edge-weighted directed graphs. The proposed algorithm has low-order polynomial complexity and is computationally efficient. The method has been validated on over 100 computer generated volumetric images and 96 CT-scanned datasets of different-sized plexiglas tubes, yielding highly accurate results (mean signed error of the measured inner- and outer-diameters of the plexiglas tubes was 0.21 ± 3.20%). Our approach can be readily extended to higher dimensional image segmentation.

Published in:

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

27 June-2 July 2004