By Topic

A rate-distortion framework for information-theoretic mobility management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Roy, Abhishek ; Dept. of Comput. Sic. Eng., Texas Univ., Arlington, TX, USA ; Misra, A. ; Das, S.K.

A practical information theoretic framework is developed for studying the optimal tradeoff between location update and paging costs in cellular networks. The framework envisions the quantization of location information into a registration area (RA) level granularity, followed by the use of an entropy-coding technique to decrease the location update rate. The rate distortion theory of the lossy quantization is identified as an appropriate measure for capturing the optimal tradeoff between a mobile's update rate and its location uncertainty. Based on LZ-78 compression, two different RA-level location update algorithms (RA-LeZi and LeZi-RA) have been developed, both of which asymptotically approach this rate-distortion bound. By allowing for quantization loss in the mobile node's movement pattern, this framework can reduce the overall update cost below the entropy bound associated with the original loss-less LeZi-update mobility management algorithm. Simulation results demonstrate a sharp decrease (∼ 50%) in the update cost, at the expense of a minor (∼ 25%) increase in the overall location management costs. The key essence of this framework lies in its practical applicability, because today's wireless networks already track the mobile user at an RA-level granularity.

Published in:

Communications, 2004 IEEE International Conference on  (Volume:7 )

Date of Conference:

20-24 June 2004