By Topic

Cross-layer goodput analysis for rate adaptive IEEE 802.11a WLAN in the generalized Nakagami fading channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li-Chun Wang ; Nat. Chiao Tung Univ., Taiwan ; Ya-Wen Lin ; Wei-Cheng Liu

This paper aims to evaluate the goodput performance of the IEEE 802.11 a wireless local area network (WLAN) from both the media access control (MAC) layer and physical (PHY) layer perspectives. From the physical layer perspective, we analyze the packet error rate performance of the orthogonal frequency division multiplexing (OFDM) based WLANs under the generalized Nakagami fading channel. According to the Chernoff bound analysis in the Nakagami fading channel, we derive the approximate packet error rate for the IEEE 802.11a WLAN with different data rates and fading parameters. Furthermore, we propose an efficient channel driven rate adaptation (CDRA) scheme. Through a PHY/MAC cross-layer analysis, we demonstrate that the goodput of the CDRA scheme indeed approaches to that of the optimal dynamic programming based rate adaptation method, while avoiding the complex calculations in selecting transmission parameters as the optimal method.

Published in:

Communications, 2004 IEEE International Conference on  (Volume:4 )

Date of Conference:

20-24 June 2004