By Topic

Performance of a low noise front-end ASIC for Si/CdTe detectors in Compton gamma-ray telescope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Tajima, H. ; Stanford Linear Accel. Center, Menlo Park, CA, USA ; Nakamoto, T. ; Tanaka, T. ; Uno, S.
more authors

Compton telescopes based on semiconductor technologies are being developed to explore the gamma-ray universe in an energy band 0.1-20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of such Compton telescopes is the high energy resolution that is crucial for high angular resolution and high background rejection capability. The energy resolution around 1 keV is required to approach physical limit of the angular resolution due to Doppler broadening. We have developed a low noise front-end ASIC (application-specific integrated circuit), VA32TA, to realize this goal for the readout of double-sided silicon strip detector (DSSD) and cadmium telluride (CdTe) pixel detector which are essential elements of the semiconductor Compton telescope. We report on the design and test results of the VA32TA. We have reached an energy resolution of 1.3 keV [full-width at half-maximum (FWHM)] for 60 and 122 keV at 0° C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:51 ,  Issue: 3 )