By Topic

Cyclic redundancy code (CRC) polynomial selection for embedded networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Koopman ; Dept. of Electr. & Comput. Eng., & ICES, Carnegie Mellon Univ., Pittsburgh, PA, USA ; T. Chakravarty

Cyclic redundancy codes (CRCs) provide a first line of defense against data corruption in many networks. Unfortunately, many commonly used CRC polynomials provide significantly less error detection capability than they might. An exhaustive exploration reveals that most previously published CRC polynomials are either inferior to alternatives or are only good choices for particular message lengths. Unfortunately these shortcomings and limitations often seem to be overlooked. This paper describes a polynomial selection process for embedded network applications and proposes a set of good general-purpose polynomials. A set of 35 new polynomials in addition to 13 previously published polynomials provides good performance for 3- to 16-bit CRCs for data word lengths up to 2048 bits.

Published in:

Dependable Systems and Networks, 2004 International Conference on

Date of Conference:

28 June-1 July 2004