Cart (Loading....) | Create Account
Close category search window
 

HybridTreeMiner: an efficient algorithm for mining frequent rooted trees and free trees using canonical forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yun Chi ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Yirong Yang ; Muntz, Richard R.

Tree structures are used extensively in domains such as computational biology, pattern recognition, XML databases, computer networks, and so on. In this paper, we present HybridTreeMiner, a computationally efficient algorithm that discovers all frequently occurring subtrees in a database of rooted unordered trees. The algorithm mines frequent subtrees by traversing an enumeration tree that systematically enumerates all subtrees. The enumeration tree is defined based on a novel canonical form for rooted unordered trees - the breadth-first canonical form (BFCF). By extending the definitions of our canonical form and enumeration tree to free trees, our algorithm can efficiently handle databases of free trees as well. We study the performance of our algorithms through extensive experiments based on both synthetic data and datasets from real applications. The experiments show that our algorithm is competitive in comparison to known rooted tree mining algorithms and is faster by one to two orders of magnitudes compared to a known algorithm for mining frequent free trees.

Published in:

Scientific and Statistical Database Management, 2004. Proceedings. 16th International Conference on

Date of Conference:

21-23 June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.