By Topic

Real-time fault diagnosis [robot fault diagnosis]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Verma, V. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Gordon, G. ; Simmons, R. ; Thrun, S.

This article presents a number of complementary algorithms for detecting faults on-board operating robots, where a fault is defined as a deviation from expected behavior. The algorithms focus on faults that cannot directly be detected from current sensor values but require inference from a sequence of time-varying sensor values. Each algorithm provides an independent improvement over the basic approach. These improvements are not mutually exclusive, and the algorithms may be combined to suit the application domain. All the approaches presented require dynamic models representing the behavior of each of the fault and operational states. These models can be built from analytical models of the robot dynamics, data from simulation, or from the real robot. All the approaches presented detect faults from a finite number of known fault conditions, although there may potentially be a very large number of these faults.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:11 ,  Issue: 2 )