By Topic

Immunet: a cheap and robust fault-tolerant packet routing mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Puente, V. ; Comput. Archit. Res. Group, Cantabria Univ., Santander, Spain ; Gregorio, J.A. ; Vallejo, F. ; Beivide, R.

A new and efficient mechanism to tolerate failures in interconnection networks for parallel and distributed computers, denoted as Immunet, is presented in this work. In the presence of failures, Immunet automatically reacts with a hardware reconfiguration of the surviving network resources. Immunet has four important advantages over previous fault-tolerant switching mechanisms. Its low hardware costs minimize the overhead that the network must support in absence of faults. As long as the network remains connected, Immunet can tolerate any number of failures regardless of their spatial and temporal combinations. The resulting communication infrastructure provides optimized adaptive minimal routing over the surviving topology. The system behavior under successive failures exhibits graceful performance degradation. Immunet reconfiguration can be totally transparent to the applications running on the parallel system as they will only be affected by the loss of those data packets circulating through the broken components. The rest of the packets will suffer only a tolerable delay induced by the time employed to perform the automatic network reconfiguration. Descriptions of the hardware network architecture and detailed synthetic and execution-driven simulations will demonstrate the benefits of Immunet.

Published in:

Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on

Date of Conference:

19-23 June 2004