Cart (Loading....) | Create Account
Close category search window
 

Transactional memory coherence and consistency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

In this paper, we propose a new shared memory model: transactional memory coherence and consistency (TCC). TCC provides a model in which atomic transactions are always the basic unit of parallel work, communication, memory coherence, and memory reference consistency. TCC greatly simplifies parallel software by eliminating the need for synchronization using conventional locks and semaphores, along with their complexities. TCC hardware must combine all writes from each transaction region in a program into a single packet and broadcast this packet to the permanent shared memory state atomically as a large block. This simplifies the coherence hardware because it reduces the need for small, low-latency messages and completely eliminates the need for conventional snoopy cache coherence protocols, as multiple speculatively written versions of a cache line may safely coexist within the system. Meanwhile, automatic, hardware-controlled rollback of speculative transactions resolves any correctness violations that may occur when several processors attempt to read and write the same data simultaneously. The cost of this simplified scheme is higher interprocessor bandwidth. To explore the costs and benefits of TCC, we study the characteristics of an optimal transaction-based memory system, and examine how different design parameters could affect the performance of real systems. Across a spectrum of applications, the TCC model itself did not limit available parallelism. Most applications are easily divided into transactions requiring only small write buffers, on the order of 4-8 KB. The broadcast requirements of TCC are high, but are well within the capabilities of CMPs and small-scale SMPs with high-speed interconnects.

Published in:

Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on

Date of Conference:

19-23 June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.