By Topic

Generalized Kirchoff's current and Voltage law formulation for coupled circuit-electromagnetic Simulation with surface Integral equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Wang ; Electr. Eng. Dept., Univ. of Washington, Seattle, WA, USA ; Gope, D. ; Jandhyala, V. ; Shi, C.-J.R.

In this paper, a new formulation for coupled circuit-electromagnetic (EM) simulation is presented. The formulation employs full-wave integral equations to model the EM behavior of two- or three-dimensional structures while using modified nodal analysis to model circuit interactions. A coupling scheme based on charge and current continuity and potential matching, realized as a generalization of Kirchoff's voltage and current laws, ensures that the EM and circuit interactions can be formulated as a seamless system. While rigorous port models for EM structures can be obtained using the approach discussed herein, it is shown that the coupling paradigm can reveal additional details of the EM-circuit interactions and can provide a path to analysis-based design iteration.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 7 )