Cart (Loading....) | Create Account
Close category search window
 

Design of a small animal PET imaging system with 1 microliter volume resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rouze, N.C. ; Dept. of Radiol., Indiana Univ. Sch. of Med., Indianapolis, IN, USA ; Schmand, M. ; Siegel, S. ; Hutchins, G.D.

The design of a new scanner for use in small animal PET imaging is described. The goal is to achieve 1 mm FWHM resolution in each of three orthogonal directions throughout a volume suitable for whole body mouse imaging, roughly 40 mm diameter × 80 mm long. Simultaneously, the design should achieve a sensitivity of greater than 5% of all decays from a point source located at the center of the scanner. The scanner uses 12, plane detector banks mounted in a 160 mm diameter ring on a rotating gantry. Each detector bank consists of a 48 × 108 array of 20 mm long LSO crystals with an array pitch of 0.87 mm. Each bank uses two Hamamatsu H8500 large-area, multi-anode photomultiplier tubes for fluorescence detection. The detector banks are divided into two sets with the respective lines of response offset by one quarter of the array pitch to give increased sampling density. Tests using a prototype crystal array demonstrate that individual crystals can be resolved. Simulations have been performed to evaluate the performance expected in the complete scanner. With F-18 point sources, the FWHM resolutions in the radial, tangential, and axial directions are less than 1 mm for source positions throughout the desired field of view (FOV). Simultaneously, the detector sensitivity is greater than 7% of all decays for a point source located at the center of the FOV. Results are also presented for simulations using different PET isotopes to investigate the effect of positron range, and for a phantom containing hot spots added to a uniform background to evaluate the scanner performance for an extended object.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.