Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhaoyang Wan ; Dept. of Chem. Eng., Lehigh Univ., Bethlehem, PA, USA ; Kothare, M.V.

In this note, we present a computationally efficient scheduled output feedback model predictive control (MPC) algorithm for constrained nonlinear systems with large operating regions. We design a set of local output feedback predictive controllers with their estimated regions of stability covering the desired operating region, and implement them as a single scheduled output feedback MPC which on-line switches between the set of local controllers and achieves nonlinear transitions with guaranteed stability. The algorithm is illustrated with a highly nonlinear continuous stirred tank reactor process.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 7 )