By Topic

Robust M-ary detection filters and smoothers for continuous-time jump Markov systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elliott, R.J. ; Haskayne Sch. of Bus., Univ. of Calgary, Alta., Canada ; Malcolm, W.P.

In this paper, we consider a dynamic M-ary detection problem when Markov chains are observed through a Wiener process. These systems are fully specified by a candidate set of parameters, whose elements are, a rate matrix for the Markov chain and a parameter for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. Given such an observation process and a specified collection of models, we estimate the probabilities of each model parameter set explaining the observation. By defining a new augmented state process, then applying the method of reference probability, we compute matrix-valued dynamics, whose solutions estimate joint probabilities for all combinations of candidate model parameter sets and values taken by the indirectly observed state process. These matrix-valued dynamics satisfy a stochastic integral equation with a Wiener process integrator. Using the gauge transformation techniques introduced by Clark and a pointwise matrix product, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics, the observation Wiener process appears as a parameter matrix in a linear ordinary differential equation, rather than an integrator in a stochastic integral equation. It is shown that these robust dynamics, when discretised, enjoy a deterministic upper bound which ensures nonnegative probabilities for any observation sample path. In contrast, no such upper bounds can be computed for Taylor expansion approximations, such as the Euler-Maryauana and Milstein schemes. Finally, by exploiting a duality between causal and anticausal robust detector dynamics, we develop an algorithm to compute smoothed mode probability estimates without stochastic integrations. A computer simulation demonstrating performance is included.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 7 )