By Topic

Matrix analysis of discontinuities in nonreciprocal waveguides: analytical description for magnetooptical slab waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sepulveda, B. ; Biosensors Group, Microelectron. Nat. Centre, Madrid, Spain ; Lechuga, Laura M.

A new analytical formalism to study the effect of discontinuities in a nonreciprocal waveguide has been developed. The analysis is based on 1) the general orthogonality relation obtained from the reciprocity theorem, 2) the modal expansion of the transverse electromagnetic fields within the waveguide, and 3) the continuity of the tangential components of such electromagnetic fields at both sides of the discontinuity. The formalism is presented in a matrix form, which allows the treatment of several discontinuities as a simple summation and product of coupling and propagation matrices. The matrix formalism is developed for magnetooptic waveguides in the three different orientations of the magnetization, and, within this context, two practical applications of magnetooptic isolators are studied.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 7 )