Cart (Loading....) | Create Account
Close category search window

Reference current estimation under distorted line voltage for control of shunt active power filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moreno, V.M. ; Dept. of Electron. & Comput., Univ. of Cantabria, Santander, Spain ; Lopez, A.P. ; Garcias, R.I.D.

Shunt active power filters (APF) are used in power systems for the compensation of harmonic currents generated for non linear loads. A new digital reference current estimation method for control of APF using a Kalman digital algorithm is presented. Its capability of prediction avoids the effects of computational lags derived from the digital signal processing. The characteristics of the proposed technique are: the harmonic current compensation in a global or a selective way, the fast dynamical response and its independence from disturbances in the line voltage waveform. Simulation and experimental results under distorted supply voltages demonstrate the usefulness of the presented technique to improve the filtering performance.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

July 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.