By Topic

Physical CAD model for high-voltage IGBTs based on lumped-charge approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iannuzzo, F. ; Dipt. di Automazione, Ind.e-Univ. degli Studi di Cassino, Italy ; Busatto, G.

A new insulated gate bipolar transistor (IGBT) model developed on a physical basis is presented. The Lumped-Charge method has been revised in order to point out a more general methodology for implementing the model into a circuit form. As an example, a version of the model for the popular PSPICE simulator is presented. The N-channel IGBT structure is described by means of an evolution of the PSPICE level-1 metal oxide semiconductor field effect transistor model. An accurate mobility model has been included to precisely predict the voltage drop in the ON state. Simulation results agree well with the experiments both in static and in switching operations. The comparison between the proposed and the native IGBT PSPICE model shows the better behavior of the former. The reasons for this result have been verified by means of two-dimensional MEDICI simulations. Moreover, the proposed model is able to predict the device behavior also in critical operations like its latchup during a turn-off under short-circuit conditions.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 4 )