By Topic

Variational learning and bits-back coding: an information-theoretic view to Bayesian learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Honkela, A. ; Neural Networks Res. Centre, Helsinki Univ. of Technol., Finland ; Valpola, H.

The bits-back coding first introduced by Wallace in 1990 and later by Hinton and van Camp in 1993 provides an interesting link between Bayesian learning and information-theoretic minimum-description-length (MDL) learning approaches. The bits-back coding allows interpreting the cost function used in the variational Bayesian method called ensemble learning as a code length in addition to the Bayesian view of misfit of the posterior approximation and a lower bound of model evidence. Combining these two viewpoints provides interesting insights to the learning process and the functions of different parts of the model. In this paper, the problem of variational Bayesian learning of hierarchical latent variable models is used to demonstrate the benefits of the two views. The code-length interpretation provides new views to many parts of the problem such as model comparison and pruning and helps explain many phenomena occurring in learning.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 4 )