By Topic

The new dope on semiconductor doping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A University of California, Berkeley, researcher has developed a way to apply semiconductor dopants at the atomic level. Controlling the amount of dopant applied is increasingly important as the size of wires, diodes, transistors, switches, and other semiconductor elements approaches molecular scale. During semiconductor fabrication, manufacturers typically add dopants to semiconductor materials, such as silicon, to change their performance by altering their electrical properties. P-type doping adds elements such as boron or indium to remove electrons. N-type doping inserts elements such as arsenic, phosphorous, or potassium to add electrons. Currently, chip makers frequently add dopants in bulk to semiconductor materials. However, as the elements become smaller, the amount and placement of doping must become more precise.

Published in:

Computer  (Volume:37 ,  Issue: 7 )