By Topic

Improving collision detection in distributed virtual environments by adaptive collision prediction tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ohlenburg, J. ; Fraunhofer Inst. Appl. Inf. Technol., Sankt Augustin, Germany

Collision detection for dynamic objects in distributed virtual environments is still an open research topic. The problems of network latency and available network bandwidth prevent exact common solutions. The consistency-throughput tradeoff states that a distributed virtual environment cannot be consistent and highly dynamic at the same time. Remote object visualization is used to extrapolate and predict the movement of remote objects reducing the bandwidth required for good approximations of the remote objects. Few update messages aggravate the effect of network latency for collision detection. In this paper, new approach extending remote object visualization techniques is demonstrated to improve the results of collision detection in distributed virtual environments. We showed how this can significantly reduce the approximation errors caused by remote object visualization techniques. This is done by predicting collisions between remote objects and adaptively changing the parameters of these techniques.

Published in:

Virtual Reality, 2004. Proceedings. IEEE

Date of Conference:

27-31 March 2004