By Topic

Exact multisensor dynamic bias estimation with local tracks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin, X. ; Dept. of Electr. & Comput. Eng., Connecticut Univ., Storrs, CT, USA ; Bar-Shalom, Y. ; Kirubarajan, T.

An exact solution is provided for the multiple sensor bias estimation problem based on local tracks. It is shown that the sensor bias estimates can be obtained dynamically using the outputs of the local (biased) state estimators. This is accomplished by manipulating the local state estimates such that they yield pseudomeasurements of the sensor biases with additive noises that are zero-mean, white, and with easily calculated covariances. These results allow evaluation of the Cramer-Rao lower bound (CRLB) on the covariance of the sensor bias estimates, i.e., a quantification of the available information about the sensor biases in any scenario. Monte Carlo simulations show that this method has significant improvement in performance with reduced rms errors of 70% compared with commonly used decoupled Kalman filter. Furthermore, the new method is shown to be statistically efficient, i.e., it meets the CRLB. The extension of the new technique for dynamically varying sensor biases is also presented.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:40 ,  Issue: 2 )