By Topic

Real-time translational control of a MEMS comb resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wang, L. ; Microelectron. Syst. Res. Center, West Virginia Univ., Morgantown, WV, USA ; Dawson, J.M. ; Hornak, L.A. ; Famouri, P.
more authors

Closed-loop control has been successfully applied to a microelectromechanical systems (MEMS) lateral comb resonator device in real-time to perform impulse disturbance damping and sinusoidal position control, enabled by the use of a through-wafer optical microprobe to obtain position feedback. This result leverages the application of lifetime, in-situ control of MEMS in order to provide quality assurance of microsystems in safety critical applications. A position feedback signal produced by a through-wafer optical microprobe has been used for comb resonator system model identification by two independent methods to accurately determine the effective mass, damping, and spring constant values of the device. After accurate determination of system parameters, closed-loop impulse disturbance damping and proportional-integral-differential (PID) translational control were applied. Closed-loop control results presented indicate controllability of such microstructures and response times on the order of the natural frequency of the device.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:40 ,  Issue: 2 )