By Topic

De-embedding and unterminating microwave fixtures with nonlinear least squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Williams ; Ball Commun. Syst. Div., Broomfield, CO, USA

A general method of characterizing microwave test fixtures for the purpose of determining the parameters of devices embedded in the fixture is discussed. The technique was used to investigate deembedding under the assumptions that all measurement errors are random and normally distributed and that the standards are distributed uniformly around the Smith chart. It was shown that for any given number of standards, the greatest accuracy under these assumptions is achieved by utilizing a large set of known reflective loads. When the propagation constant and the reflection coefficients of the standards are not known, then equal numbers of thru lines and reflective loads give the highest accuracy, although not as high as when the propagation constant and reflection coefficients are known. The accuracy of the technique was studied and compared with that of the common open-short-load (OSL) and thru-reflect-line methods. The OSL technique was found to be considerably less accurate than using sets of offset reflective loads

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:38 ,  Issue: 6 )