By Topic

Wavelet based robust sub-band features for phoneme recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. Farooq ; Dept. of Electron. Eng., AMU Aligarh, India ; S. Datta

Wavelet transform has been found to be an effective tool for the time-frequency analysis of non-stationary and quasi-stationary signals. Recent years have seen wavelet transform being used for feature extraction in speech recognition applications. In the paper a sub-band feature extraction technique based on an admissible wavelet transform is proposed and the features are modified to make them robust to additive white Gaussian noise. The performance of this system is compared with the conventional mel frequency cepstral coefficients (MFCC) under various signal to noise ratios. The recognition performance based on the eight sub-band features is found to be superior under the noisy conditions compared with MFCC features.

Published in:

IEE Proceedings - Vision, Image and Signal Processing  (Volume:151 ,  Issue: 3 )