By Topic

Quantitative evaluation of image-based distortion correction in diffusion tensor imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Netsch, T. ; Philips Res. Labs., Hamburg, Germany ; van Muiswinkel, A.

A statistical method for the evaluation of image registration for a series of images based on the assessment of consistency properties of the registration results is proposed. Consistency is defined as the residual error of the composition of cyclic registrations. By combining the transformations of different algorithms the consistency error allows a quantitative comparison without the use of ground truth, specifically, it allows a determination as to whether the algorithms are compatible and hence provide comparable registrations. Consistency testing is applied to evaluate retrospective correction of eddy current-induced image distortion in diffusion tensor imaging of the brain. In the literature several image transformations and similarity measures have been proposed, generally showing a significant reduction of distortion in side-by-side comparison of parametric maps before and after registration. Transformations derived from imaging physics and a three-dimensional affine transformation as well as mutual information (MI) and local correlation (LC) similarity are compared to each other by means of consistency testing. The dedicated transformations could not demonstrate a significant difference for more than half of the series considered. LC similarity is well-suited for distortion correction providing more consistent registrations which are comparable to MI.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 7 )