By Topic

A short wavelength GigaHertz clocked fiber-optic quantum key distribution system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gordon, K.J. ; Sch. of Eng. & Phys. Sci., Heriot-Watt Univ., Edinburgh, UK ; Fernandez, V. ; Townsend, P.D. ; Buller, Gerald S.

A quantum key distribution (QKD) system has been developed, using a standard telecommunications optical fiber, which is capable of operating at clock rates of greater than 1 GHz. The QKD system implements a polarization encoded version of the B92 protocol. The system employs vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, and silicon single photon avalanche diodes as the single photon detectors. A distributed feedback laser of emission wavelength 1.3 μm, and a linear gain germanium avalanche photodiode was used to optically synchronize individual photons over the standard telecommunications fiber. The QKD system exhibited a quantum bit error rate (QBER) of 1.4%, and an estimated net bit rate (NBR) greater than 100 000 bits-1 for a 4.2-km transmission range. For a 10-km fiber range, a QBER of 2.1%, and an estimated NBR of greater than 7000 bits-1 was achieved.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 7 )