By Topic

Characterization of laser produced tetrakis (dimethylamino) ethylene plasma in a high-pressure background gas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. Akhtar ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA ; J. E. Scharer ; S. M. Tysk ; C. M. Denning

We present an interferometric and spectroscopic characterization of ultraviolet (UV) laser photoionization of a low ionization potential organic vapor, tetrakis (dimethylamino) ethylene (TMAE), seeded in high-pressure air component gases. These experiments are performed to explore the feasibility of using an electrodeless UV laser preionization of TMAE to initiate a plasma seeded in atmospheric pressure gases that can later be sustained by radiofrequency (RF) power by inductive wave coupling, thereby reducing the initiation RF power budget. A large volume (500 cc), high-density (∼1013cm-3), electrodeless plasma is created by single-photon, 193 nm excimer laser ionization. 105 GHz millimeter-wave interferometry along with optical spectroscopy is employed to investigate the plasma formation and decay characteristics. The TMAE plasma decay mechanisms including two-body and three-body recombination with and without high pressure gases are examined and the dominant loss processes discussed and evaluated. Both density and optical emission measurements show a delay of 140 ± 10 ns in the peak plasma density and emission indicating that the dominant ionization process is delayed ionization via excitation of super-excited states. The experiment also shows that TMAE remains a viable seed gas for UV ionization in the presence of air for t≤10 min.

Published in:

IEEE Transactions on Plasma Science  (Volume:32 ,  Issue: 2 )