Cart (Loading....) | Create Account
Close category search window
 

Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Biyikli, N. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; Kimukin, I. ; Aytur, O. ; Ozbay, E.

We report solar-blind AlxGa1-xN-based heterojunction p-i-n photodiodes with low dark current and high detectivity. After the p+ GaN cap layer was recess etched, measured dark current was below 3 fA for reverse bias values up to 6 V. The device responsivity increased with reverse bias and reached 0.11 A/W at 261 nm under 10-V reverse bias. The detectors exhibited a cutoff around 283 nm, and a visible rejection of four orders of magnitude at zero bias. Low dark current values led to a high differential resistance of 9.52×1015 Ω. The thermally limited detectivity of the devices was calculated as 4.9×1014 cm·Hz12/W-1.

Published in:

Photonics Technology Letters, IEEE  (Volume:16 ,  Issue: 7 )

Date of Publication:

July 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.