By Topic

Analysis of vigilance states by neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khalifa, B.K. ; Lab. de Biophys. et de Physiologie, Monastir, Tunisia ; Bedoui, M.H. ; Dogui, M. ; Alexandre, F.

The main aim in this paper is to study an algorithm of vigilance detection from a minimal number of EEG electrodes, easy to implement on programmable devices, to be used in ambulatory and real everyday life conditions. The connectionist unsupervised approach is summarized in this paper. From the unsupervised classification obtained, a connectionist supervised classification algorithm, the learning vector quantization (LVQ), is used for two different tasks. Firstly, the artefacted states are detected and removed. Secondly, the states deprived of artefacts are then classified in order to decide for the state of vigilance. Connectionist methods with supervised and unsupervised training were used to discriminate the EEG signals characterizing the vigilance states. An artificial neuronal model with a minimal architecture minimizes the complexity and allows implementation. It demonstrates that information, pertinent enough to characterize vigilance states, can be extracted from EEG signal recorded from a single electrode It should also be noted that the intervention of the expert is fundamental in this approach to differentiate nonartefacted vigilance states and artefacted vigilance states.

Published in:

Information and Communication Technologies: From Theory to Applications, 2004. Proceedings. 2004 International Conference on

Date of Conference:

19-23 April 2004