Cart (Loading....) | Create Account
Close category search window
 

Computationally efficient wavelet affine invariant functions for shape recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bala, E. ; Dept. of Electr. & Comput. Eng., Delaware Univ., Newark, DE, USA ; Cetin, A.E.

An affine invariant function for object recognition is constructed from wavelet coefficients of the object boundary. In previous works, undecimated dyadic wavelet transform was used to construct affine invariant functions. In this paper, an algorithm based on decimated wavelet transform is developed to compute an affine invariant function. As a result computational complexity is reduced without decreasing recognition performance. Experimental results are presented.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 8 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.