By Topic

Recovering the missing components in a large noisy low-rank matrix: application to SFM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pei Chen ; Dept. of Electr. & Comput. Sci. Eng., Monash Univ., Clayton, Vic., Australia ; Suter, D.

In computer vision, it is common to require operations on matrices with "missing data," for example, because of occlusion or tracking failures in the Structure from Motion (SFM) problem. Such a problem can be tackled, allowing the recovery of the missing values, if the matrix should be of low rank (when noise free). The filling in of missing values is known as imputation. Imputation can also be applied in the various subspace techniques for face and shape classification, online "recommender" systems, and a wide variety of other applications. However, iterative imputation can lead to the "recovery" of data that is seriously in error. In this paper, we provide a method to recover the most reliable imputation, in terms of deciding when the inclusion of extra rows or columns, containing significant numbers of missing entries, is likely to lead to poor recovery of the missing parts. Although the proposed approach can be equally applied to a wide range of imputation methods, this paper addresses only the SFM problem. The performance of the proposed method is compared with Jacobs' and Shum's methods for SFM.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 8 )