By Topic

Image enhancement and denoising by complex diffusion processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gilboa, G. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Sochen, N. ; Zeevi, Y.Y.

The linear and nonlinear scale spaces, generated by the inherently real-valued diffusion equation, are generalized to complex diffusion processes, by incorporating the free Schrodinger equation. A fundamental solution for the linear case of the complex diffusion equation is developed. Analysis of its behavior shows that the generalized diffusion process combines properties of both forward and inverse diffusion. We prove that the imaginary part is a smoothed second derivative, scaled by time, when the complex diffusion coefficient approaches the real axis. Based on this observation, we develop two examples of nonlinear complex processes, useful in image processing: a regularized shock filter for image enhancement and a ramp preserving denoising process.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 8 )