By Topic

Adaptive minimum symbol-error-rate decision feedback equalization for multilevel pulse-amplitude modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng Chen ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, UK ; Hanzo, L. ; Mulgrew, B.

The design of decision feedback equalizers (DFEs) is typically based on the minimum mean square error (MMSE) principle as this leads to effective adaptive implementation in the form of the least mean square algorithm. It is well-known, however, that in certain situations, the MMSE solution can be distinctly inferior to the optimal minimum symbol error rate (MSER) solution. We consider the MSER design for multilevel pulse-amplitude modulation. Block-data adaptive implementation of the theoretical MSER DFE solution is developed based on the Parzen window estimate of a probability density function. Furthermore, a sample-by-sample adaptive MSER algorithm, called the least symbol error rate (LSER), is derived for adaptive equalization applications. The proposed LSER algorithm has a complexity that increases linearly with the equalizer length. Computer simulation is employed to evaluate the proposed alternative MSER design for equalization application with multilevel signaling schemes.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 7 )