By Topic

Bayesian methods for multiaspect target tracking in image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. G. S. Bruno ; Divisao de Engenharia Eletronica, Inst. Tecnologico de Aeronautica, Sao Jose Dos Campos, Brazil

In this paper, we introduce new algorithms for automatic tracking of multiaspect targets in cluttered image sequences. We depart from the conventional correlation filter/Kalman filter association approach to target tracking and propose instead a nonlinear Bayesian methodology that enables direct tracking from the image sequence incorporating the statistical models for the background clutter, target motion, and target aspect change. Proposed algorithms include 1) a batch hidden Markov model (HMM) smoother and a sequential HMM filter for joint multiframe target detection and tracking and 2) two mixed-state sequential importance sampling trackers based on the sampling/importance resampling (SIR) and the auxiliary particle filtering (APF) techniques. Performance studies show that the proposed algorithms outperform the association of a bank of template correlators and a Kalman filter in adverse scenarios of low target-to-clutter ratio and uncertainty in the true target aspect.

Published in:

IEEE Transactions on Signal Processing  (Volume:52 ,  Issue: 7 )