By Topic

Shape from moments - an estimation theory perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elad, M. ; Comput. Sci. Dept., Technion-Israel Inst. of Technol., Haifa, Israel ; Milanfar, P. ; Golub, G.H.

This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 7 )