By Topic

Optimized prunable single-cycle interleavers for turbo codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daneshgaran, F. ; Dept. of Electr. & Comput. Eng., California State Univ., Los Angeles, CA, USA ; Laddomada, M.

This paper is aimed at the problem of designing optimized interleavers for parallel concatenated convolutional codes (PCCC) that satisfy several requirements simultaneously: 1) designing interleavers tailored to the constituent codes of the PCCC; 2) improving the distance spectra of the resulting turbo codes which dominate their asymptotic performance; 3) constructing optimized interleavers recursively so that they are implicitly prunable; and 4) completely avoiding short permutation cycles in order to reduce the risk of having strong correlations between the extrinsic information during iterative decoding. To this end, we present two theorems that lead to a modification of a previously developed iterative interleaver growth algorithm (IGA) that can be used to design optimized variable-length interleavers, whereby at every length the optimized permutation implemented by the interleaver is a single-cycle permutation. Two more modifications of the IGA are presented to improve the performance of the optimized interleavers at a reduced complexity. The optimization is achieved via constrained minimization of a cost function closely related to the asymptotic bit-error rate or frame-error rate of the code.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 6 )