By Topic

Optimal and self-tuning State estimation for singular stochastic systems: a polynomial equation approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huanshui Zhang ; HIT Campus, Shenzen Univ., China ; Lihua Xie ; Yeng Chai Soh ; Wei Wang

This paper is concerned with the optimal steady-state estimation for singular stochastic discrete-time systems using a polynomial equation approach. The key to the optimal estimation is the calculation of an optimal estimator gain matrix. The main contribution of the paper is the derivation of a simple method for computing the gain matrix. Our method involves solving one simple polynomial equation which is derived from the uniqueness of the autoregressive moving average (ARMA) innovation model. The approach covers prediction, filtering, and smoothing problems. Further, when the noise statistics of the model are not available, self-tuning estimation is performed by identifying one ARMA innovation model.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:51 ,  Issue: 6 )