Cart (Loading....) | Create Account
Close category search window
 

Atrial activity extraction for atrial fibrillation analysis using blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rieta, J.J. ; Bioeng. Electron. & Telemedicine Res. Group, Polytech. Univ. of Valencia. EPSG, Valencia, Spain ; Castells, F. ; Sanchez, C. ; Zarzoso, V.
more authors

This contribution addresses the extraction of atrial activity (AA) from real electrocardiogram (ECG) recordings of atrial fibrillation (AF). We show the appropriateness of independent component analysis (ICA) to tackle this biomedical challenge when regarded as a blind source separation (BSS) problem. ICA is a statistical tool able to reconstruct the unobservable independent sources of bioelectric activity which generate, through instantaneous linear mixing, a measurable set of signals. The three key hypothesis that make ICA applicable in the present scenario are discussed and validated: 1) AA and ventricular activity (VA) are generated by sources of independent bioelectric activity; 2) AA and VA present non-Gaussian distributions; and 3) the generation of the surface ECG potentials from the cardioelectric sources can be regarded as a narrow-band linear propagation process. To empirically endorse these claims, an ICA algorithm is applied to recordings from seven patients with persistent AF. We demonstrate that the AA source can be identified using a kurtosis-based reordering of the separated signals followed by spectral analysis of the sub-Gaussian sources. In contrast to traditional methods, the proposed BSS-based approach is able to obtain a unified AA signal by exploiting the atrial information present in every ECG lead, which results in an increased robustness with respect to electrode selection and placement.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 7 )

Date of Publication:

July 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.