By Topic

Some stochastic properties of memoryless individual sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nobel, A.B. ; Dept. of Stat., Univ. of North Carolina, Chapel Hill, NC, USA

An individual sequence of real numbers is memoryless if no continuous Markov prediction scheme of finite order can outperform the best constant predictor under the squared loss. It is established that memoryless sequences satisfy an elementary law of large numbers, and sliding-block versions of Hoeffding's inequality and the central limit theorem. It is further established that memoryless binary sequences have convergent sample averages of every order, and that their limiting distributions are Bernoulli. Several examples and sources of memoryless sequences are given, and it is shown how memoryless binary sequences may be constructed from aggregating methods for sequential prediction.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 7 )