Cart (Loading....) | Create Account
Close category search window

On the efficient evaluation of probabilistic similarity functions for image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vasconcelos, N. ; Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA, USA

Probabilistic approaches are a promising solution to the image retrieval problem that, when compared to standard retrieval methods, can lead to a significant gain in retrieval accuracy. However, this occurs at the cost of a significant increase in computational complexity. In fact, closed-form solutions for probabilistic retrieval are currently available only for simple probabilistic models such as the Gaussian or the histogram. We analyze the case of mixture densities and exploit the asymptotic equivalence between likelihood and Kullback-Leibler (KL) divergence to derive solutions for these models. In particular, 1) we show that the divergence can be computed exactly for vector quantizers (VQs) and 2) has an approximate solution for Gauss mixtures (GMs) that, in high-dimensional feature spaces, introduces no significant degradation of the resulting similarity judgments. In both cases, the new solutions have closed-form and computational complexity equivalent to that of standard retrieval approaches.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 7 )

Date of Publication:

July 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.