By Topic

Automatic indexing of lecture presentations using unsupervised learning of presumed discourse markers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Kawahara ; Sch. of Informatics, Kyoto Univ., Japan ; M. Hasegawa ; K. Shitaoka ; T. Kitade
more authors

A new method for automatic detection of section boundaries and extraction of key sentences from lecture audio archives is proposed. The method makes use of 'discourse markers' (DMs), which are characteristic expressions used in initial utterances of sections, together with pause and language model information. The DMs are derived in a totally unsupervised manner based on word statistics. An experimental evaluation using the Corpus of Spontaneous Japanese (CSJ) demonstrates that the proposed method provides better indexing of section boundaries compared with a simple baseline method using pause information only, and that it is robust against speech recognition errors. The method is also applied to extraction of key sentences that can index the section topics. The statistics of the presumed DMs are used to define the importance of sentences, which favors potentially section-initial ones. The measure is also combined with the conventional tf-idf measure based on content words. Experimental results confirm the effectiveness of using the DMs in combination with the keyword-based method. The paper also describes a statistical framework for transforming raw speech transcriptions into the document style for defining appropriate sentence units and improving readability.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:12 ,  Issue: 4 )