By Topic

Development of augmented reality system for AFM-based nanomanipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guangyong Li ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Ning Xi ; Mengmeng Yu ; Wai-Keung Fung

Using atomic force microscopy (AFM) as a nanomanipulation tool has been discussed for more than a decade. However, its lack of real-time visual feedback during manipulation has hindered its wide application. Fortunately, this problem has been overcome by our recently developed augmented reality system. By locally updating the AFM image based on real-time force information during manipulation, not only can this new system provide real-time force feedback but also real-time visual feedback. The real-time visual display combined with the real-time force feedback provides an augmented reality environment, in which the operator not only can feel the interaction forces but also observe the real-time changes of the nano-environment. This augmented reality system capable of nanolithography and manipulation of nano-particles helps the operator to perform several operations without the need of a new image scan, which makes AFM-based nano-assembly feasible and applicable.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:9 ,  Issue: 2 )