Cart (Loading....) | Create Account
Close category search window
 

An effect of snow for electric energy generation by 40 kW PV system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nakagawa, S. ; Maizuru Nat. Coll. of Tech., Maizuru Kyoto, Japan ; Tokoro, T. ; Nakano, T. ; Hayama, K.
more authors

In the fiscal year 1999, a 40 kW PV system was installed in Maizuru national college of technology. In Maizuru-city located in the sea of Japan side, there is much snowfall in the winter season. This snow obstructs the solar energy and decreases the irradiation on the PV system. Therefore, the total efficiency of electric power generation of the system is decreased. The research of equipment, which melts snow, is carried out in order to solve this problem, however, it has not yet come to the practical use. This study estimates the effect of the snow melting equipment by using the PV database which is previously constructed by us. Using a model for estimating the electric energy generated by 40 kW PV system, it proposes the operation time and its position of the snow melting equipment. The position of the snow melting equipment is the lower edge portion of the bottom ones of solar cell modules. The operation time of the equipment is the time after the snow becomes pressured. These results improve the efficiency of the PV system in the snowfall region. Both the generated electric powers with and without snow melting device can evaluate by using our PV model and database.

Published in:

Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on  (Volume:3 )

Date of Conference:

18-18 May 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.