By Topic

Filter bank design for a subband adaptive filtering structure with critical sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. R. Petraglia ; Program of Electr. Eng./COPPE, Fed. Univ. of Rio de Janeiro, Brazil ; P. B. Batalheiro

Subband adaptive filtering structures are attractive in applications such as acoustic echo cancellation and channel equalization, due to their properties of decorrelating the input signal and reducing the computational complexity. Recently, a new adaptive filtering structure with critical sampling was proposed. In this paper, we describe an optimization procedure to select the analysis and synthesis filter banks of this new subband structure, so that minimum steady-state mean square error or fastest convergence rate can be achieved. Such filter-bank design method is based on a theoretical analysis of the convergence properties of the adaptation algorithm and uses a nonlinear optimization routine. Computer simulations illustrate the convergence improvements that can be obtained with the filter banks designed by the proposed method.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:51 ,  Issue: 6 )