Cart (Loading....) | Create Account
Close category search window
 

Real-time call admission control for packet-switched networking by cellular neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levendovszky, J. ; Dept. of Telecommun., Budapest Univ. of Technol. & Econ., Hungary ; Fancsali, A.

In this paper, novel call admission control (CAC) algorithms are developed based on cellular neural networks. These algorithms can achieve high network utilization by performing CAC in real-time, which is imperative in supporting quality of service (QoS) communication over packet-switched networks. The proposed solutions are of basic significance in access technology where a subscriber population (connected to the Internet via an access module) needs to receive services. In this case, QoS can only be preserved by admitting those user configurations which will not overload the access module. The paper treats CAC as a set separation problem where the separation surface is approximated based on a training set. This casts CAC as an image processing task in which a complex admission pattern is to be recognized from a couple of initial points belonging to the training set. Since CNNs can implement any propagation models to explore complex patterns, CAC can then be carried out by a CNN. The major challenge is to find the proper template matrix which yields high network utilization. On the other hand, the proposed method is also capable of handling three-dimensional separation surfaces, as in a typical access scenario there are three traffic classes (e.g., two type of Internet access and one voice over asymmetric digital subscriber line.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:51 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.