By Topic

Complex efficient carrier frequency offset estimation algorithm in OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhongshan Zhang ; Center for Wireless Commun., Beijing Univ. of Posts & Telecommun., China ; Keping Long ; Yuanan Liu

A new carrier frequency offset estimation scheme in the orthogonal frequency division multiplexing (OFDM) system is proposed. The proposed algorithm is an extension of the Michele Morelli (M&M) algorithm. By dividing one training symbol into L>1 identical small blocks, the carrier frequency offset estimation range up to ±L/2 times subcarrier spacing can be obtained. The proposed algorithm can utilize the correlativity among all small blocks of a training symbol more sufficiently than the M&M algorithm, and thus it is more accurate and robust. Without increasing the estimation errors, the computational complexity of the proposed algorithm can be further reduced by increasing parameters Hl and Hh with a positive value simultaneously.

Published in:

IEEE Transactions on Broadcasting  (Volume:50 ,  Issue: 2 )