We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An advanced system for the automatic classification of multitemporal SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bruzzone, L. ; Dept. of Inf. & Commun. Technol., Trento Univ., Italy ; Marconcini, M. ; Wegmuller, U. ; Wiesmann, A.

A novel system for the classification of multitemporal synthetic aperture radar (SAR) images is presented. It has been developed by integrating an analysis of the multitemporal SAR signal physics with a pattern recognition approach. The system is made up of a feature-extraction module and a neural-network classifier, as well as a set of standard preprocessing procedures. The feature-extraction module derives a set of features from a series of multitemporal SAR images. These features are based on the concepts of long-term coherence and backscattering temporal variability and have been defined according to an analysis of the multitemporal SAR signal behavior in the presence of different land-cover classes. The neural-network classifier (which is based on a radial basis function neural architecture) properly exploits the multitemporal features for producing accurate land-cover maps. Thanks to the effectiveness of the extracted features, the number of measures that can be provided as input to the classifier is significantly smaller than the number of available multitemporal images. This reduces the complexity of the neural architecture (and consequently increases the generalization capabilities of the classifier) and relaxes the requirements relating to the number of training patterns to be used for classifier learning. Experimental results (obtained on a multitemporal series of European Remote Sensing 1 satellite SAR images) confirm the effectiveness of the proposed system, which exhibits both high classification accuracy and good stability versus parameter settings. These results also point out that properly integrating a pattern recognition procedure (based on machine learning) with an accurate feature extraction phase (based on the SAR sensor physics understanding) represents an effective approach to SAR data analysis.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 6 )